metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Sodium 2,4,*N*-trichlorobenzenesulfonamidate sesquihydrate

B. Thimme Gowda,^a* M. B. Savitha,^a Jozef Kožíšek,^b Miroslav Tokarčík^c and Hartmut Fuess^d

^aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, ^bDepartment of Physical Chemistry, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovak Republic, ^cDepartment of Chemical Physics, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovak Republic, and ^dInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany Correspondence e-mail: gowdabt@yahoo.com

Received 6 May 2007; accepted 10 May 2007

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.004 Å; R factor = 0.038; wR factor = 0.081; data-to-parameter ratio = 14.3.

The structure of the title compound, Na⁺·C₆H₃Cl₃. NO₂S⁻·1.5H₂O, is similar to those of sodium *N*-chlorobenzenesulfonamidate, sodium *N*-chloro-4-methylbenzenesulfonamidate, sodium 4,*N*-dichlorobenzenesulfonamidate and sodium 4,*N*-dichloro-2-methylbenzenesulfonamidate. There is no interaction between the N and Na atoms. The S-N distance of 1.583 (2) Å is consistent with an S=N double bond. One water molecule is located on a twofold rotation axis.

Related literature

For related literature, see: George *et al.* (2000); Gowda & Kumar (2003); Gowda & Shetty (2004); Gowda *et al.* (2002, 2005); Gowda, D'Souza & Kumar (2003); Gowda, Jyothi, Kozisek & Fuess (2003); Gowda, Jyothi, Kozisek, Tokarcik & Fuess (2007); Gowda, Srilatha, Foro, Kozisek & Fuess (2007); Olmstead & Power (1986).

Experimental

Crystal data

Na ⁺ ·C ₆ H ₃ Cl ₃ NO ₂ S ⁻ ·1.5H ₂ O	b = 6.7410 (13) Å
$M_r = 309.52$	c = 30.187 (6) Å
Monoclinic, $C2/c$	$\beta = 98.51 \ (3)^{\circ}$
a = 11.033 (2) Å	V = 2220.4 (8) Å ³

Z = 8Mo $K\alpha$ radiation $\mu = 1.04 \text{ mm}^{-1}$

Data collection

```
Oxford Diffraction Xcalibur
diffractometer
Absorption correction: analytical
(CrysAlis RED; Oxford
Diffraction, 2003)
T_{\rm min} = 0.646, T_{\rm max} = 0.851
```

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.038$ $wR(F^2) = 0.081$ S = 1.092162 reflections 151 parameters 7 restraints $0.46 \times 0.32 \times 0.16 \text{ mm}$

T = 294 (2) K

3256 measured reflections 2162 independent reflections 1872 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.047$

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2003); cell refinement: *CrysAlis RED* (Oxford Diffraction, 2003); data reduction: *CrysAlis RED*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *DIAMOND* (Brandenburg, 2002); software used to prepare material for publication: *SHELXL97*, *PLATON* (Spek, 2003) and *WinGX* (Farrugia, 1999).

BTG gratefully thanks the Alexander von Humboldt Foundation, Bonn, Germany for the extension of his research fellowship. JK and MT thank the Grant Agency of the Slovak Republic (grant No. 1/2449/05).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2359).

References

Brandenburg, K. (2002). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Farrugia, L. J. (1997). J. Appl. Cryst. **30**, 565.

- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- George, E., Vivekanandan, S. & Sivakumar, K. (2000). Acta Cryst. C56, 1208– 1209.
- Gowda, B. T., Damodara, N. & Jyothi, K. (2005). Int. J. Chem. Kinet. 37, 572–582.
- Gowda, B. T., D'Souza, J. D. & Kumar, B. H. A. (2003). Z. Naturforsch. Teil A, 58, 51–56.
- Gowda, B. T., Jyothi, K. & D'Souza, J. D. (2002). Z. Naturforsch. Teil A, 57, 967–973.
- Gowda, B. T., Jyothi, K., Kozisek, J. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 656–660.
- Gowda, B. T., Jyothi, K., Kozisek, J., Tokarcik, M. T. & Fuess, H. (2007). Acta Cryst. E63. In the Press (bt2356).
- Gowda, B. T. & Kumar, B. H. A. (2003). Oxid. Commun. 26, 403-425.
- Gowda, B. T. & Shetty, M. (2004). J. Phys. Org. Chem. 17, 848-864.
- Gowda, B. T., Srilatha, Foro, S., Kozisek, J. & Fuess, H. (2007). Z. Naturforsch. Teil A, **62**. In the press.
- Olmstead, M. M. & Power, P. P. (1986). Inorg. Chem. 25, 4057-4058.
- Oxford Diffraction (2003). CrysAlis CCD & CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
- Sheldrick, G. M. (1997). SHELXS97 & SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

supplementary materials

Acta Cryst. (2007). E63, m1646 [doi:10.1107/S1600536807023045]

Sodium 2,4,N-trichlorobenzenesulfonamidate sesquihydrate

B. T. Gowda, M. B. Savitha, J. Kozísek, M. Tokarcík and H. Fuess

Comment

The chemistry of arylsulfonamides and their N-halo compounds is of interest as they show distinct physical, chemical and biological properties. Many of these compounds exhibit pharmacological, fungicidal and herbicidal activities due to their oxidizing action in aqueous, partial aqueous and non-aqueous media. Thus N-halo arylsulfonamides are of interest in synthetic, mechanistic, analytical and biological chemistry (Gowda & Kumar, 2003; Gowda & Shetty, 2004; Gowda *et al.*, 2002; Gowda *et al.*, 2005; Gowda, Srilatha *et al.*, 2007). In the present work, the structure of sodium *N*-chloro-2,4-dichloroben-zenesulfonamide has been determined to explore the substituent effects on the solid state structures of sulfonamides and N-halo arylsulfonamides (Gowda, Jyothi *et al.*, 2003; Gowda, Srilatha *et al.*, 2007).

The crystal structure of is complex similar to those of sodium *N*-chloro-benzenesulfonamide (George *et al.*, 2000), sodium *N*-chloro-4-chlorobenzenesulfonamide (Gowda, Srilatha, *et al.*, 2007), sodium *N*-chloro-4-methylbenzenesulfonamide (Olmstead & Power, 1986) and sodium *N*-chloro-2-methyl-4-chlorobenzenesulfonamide (Gowda, Jyothi *et al.*, 2007). There is no interaction between the nitrogen and sodium atoms in the molecule, and Na+ is attached to one of the sulfonyl oxygen atoms.

The effects of N-chlorination and substitution in the phenyl ring on the structural data of sulfonamides have been considered by comparing the geometric parameters of them. The comparison revealed that on mono N-chlorination of benzenesulfonamide (George *et al.*, 2000) and 4-chlorbenzenesulfonamide (Gowda, Jyothi *et al.*, 2003), the C—S and S—O bond lengths increased marginally, while the S—N bond length remained more or less the same or decreased marginally. Further, N-chlorination of N-chloro-4-chlorobenzenesulfonamide decreases the C—S, S—O and N—Cl, but increased the S—N bond length (Gowda, Jyothi *et al.*, 2007). The introduction of an additional Cl atom to the benzene ring at the *ortho* position marginally increased the C—S bond length and decreased the S—N bond length, while the S—O and N—Cl bond lengths remained more or less the same. The bond angles also changed on both N-chlorination and introduction of Cl atoms to the benzene ring.

Experimental

The title compound was prepared according to the literature method (Gowda, D'Souza *et al.*, 2003 *a*). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared, and NMR spectra (Gowda, D'Souza *et al.*, 2003 *a*). Single crystals of the title compound were obtained from a slow evaporation of its chloroform solution and used for X-ray diffraction studies at room temperature.

Refinement

Crystals of the title compound are monoclinic; space group C2/c. H atoms were positioned geometrically and refined using a riding model with C—H = 0.93 Å and with $U_{iso}(H) = 1.2 U_{eq}(C)$. No restraints were applied for non-hydrogen atoms. Friedel equivalents were merged prior to the final refinements.

H atoms bonded to O atoms were found in fourier map and finally refined with O-H bond length restrained to 0.82 (1)Å and $U_{iso}(H) = 1.2 U_{eq}(O)$.

Figures

Fig. 1. ORTEP view of the title compound showing the atom labelling scheme (50% probability displacement ellipsoids)

Sodium 2,4,N-trichlorobenzenesulfonamidate sesquihydrate

Crystal data

$Na^+ C_6H_3Cl_3NO_2S^- 1.5H_2O$	$F_{000} = 1240.0$
$M_r = 309.52$	$D_{\rm x} = 1.834 {\rm ~Mg~m}^{-3}$
Monoclinic, C2/c	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -C 2yc	Cell parameters from 3687 reflections
a = 11.033 (2) Å	$\theta = 3.6 - 30.1^{\circ}$
<i>b</i> = 6.7410 (13) Å	$\mu = 1.04 \text{ mm}^{-1}$
c = 30.187 (6) Å	T = 294 (2) K
$\beta = 98.51 \ (3)^{\circ}$	Block, yellow
$V = 2220.4 (8) \text{ Å}^3$	$0.46 \times 0.32 \times 0.16 \text{ mm}$
Z = 8	

Data collection

Oxford Diffraction Xcalibur System diffractometer	2162 independent reflections
Radiation source: fine-focus sealed tube	1872 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.047$
T = 294(2) K	$\theta_{\rm max} = 26.2^{\circ}$
Rotation method data acquisition using ω and phi scans	$\theta_{\min} = 6.8^{\circ}$
Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2003)	$h = -13 \rightarrow 13$
$T_{\min} = 0.646, \ T_{\max} = 0.851$	$k = 0 \rightarrow 8$
3256 measured reflections	$l = 0 \rightarrow 37$

Refinement

Refinement on F^2	H atoms treated by a mixture of independent and constrained refinement	
Least-squares matrix: full	$w = 1/[\sigma^2(F_0^2) + (0.0305P)^2 + 4.9463P]$ where $P = (F_0^2 + 2F_c^2)/3$	
$R[F^2 > 2\sigma(F^2)] = 0.038$	$(\Delta/\sigma)_{\rm max} = 0.001$	
$wR(F^2) = 0.081$	$\Delta \rho_{max} = 0.40 \text{ e } \text{\AA}^{-3}$	
<i>S</i> = 1.09	$\Delta \rho_{\rm min} = -0.41 \ {\rm e} \ {\rm \AA}^{-3}$	
2162 reflections	Extinction correction: SHELXL97, Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(2 θ)] ^{-1/4}	
151 parameters	Extinction coefficient: 0.0083 (6)	
7 restraints		

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
0.3266 (2)	0.3152 (3)	0.61865 (8)	0.0221 (5)
0.4082 (2)	0.3777 (4)	0.59049 (8)	0.0260 (5)
0.3651 (3)	0.4513 (4)	0.54803 (9)	0.0348 (6)
0.4198	0.4937	0.5293	0.042*
0.2411 (3)	0.4607 (4)	0.53402 (9)	0.0374 (7)
0.1587 (3)	0.4044 (5)	0.56120 (10)	0.0413 (7)
0.0749	0.4146	0.5514	0.05*
0.2020 (2)	0.3320 (4)	0.60359 (9)	0.0329 (6)
0.1463	0.2939	0.6223	0.039*
0.46541 (19)	0.0345 (3)	0.66974 (7)	0.0267 (5)
0.44434 (16)	0.3586 (3)	0.70026 (6)	0.0317 (4)
0.25872 (17)	0.1563 (3)	0.68763 (6)	0.0359 (5)
0.37271 (5)	0.21142 (9)	0.672848 (19)	0.02257 (18)
0.39467 (6)	-0.15130 (10)	0.63434 (2)	0.0345 (2)
0.56526 (6)	0.36763 (12)	0.60616 (3)	0.0424 (2)
0.18902 (9)	0.53791 (12)	0.47951 (3)	0.0579 (3)
0.14565 (9)	-0.00688 (16)	0.73657 (3)	0.0328 (3)
0	0.2632 (4)	0.75	0.0346 (6)
-0.010 (3)	0.339 (3)	0.7290 (7)	0.041*
0.28754 (17)	0.1707 (3)	0.79286 (6)	0.0350 (5)
0.247 (2)	0.196 (4)	0.8128 (6)	0.042*
0.3478 (17)	0.111 (4)	0.8039 (8)	0.042*
	x 0.3266 (2) 0.4082 (2) 0.3651 (3) 0.4198 0.2411 (3) 0.1587 (3) 0.0749 0.2020 (2) 0.1463 0.46541 (19) 0.44434 (16) 0.25872 (17) 0.37271 (5) 0.39467 (6) 0.56526 (6) 0.18902 (9) 0.14565 (9) 0 -0.010 (3) 0.28754 (17) 0.247 (2) 0.3478 (17)	x y $0.3266(2)$ $0.3152(3)$ $0.4082(2)$ $0.3777(4)$ $0.3651(3)$ $0.4513(4)$ 0.4198 0.4937 $0.2411(3)$ $0.4607(4)$ $0.1587(3)$ $0.4044(5)$ 0.0749 0.4146 $0.2020(2)$ $0.3320(4)$ 0.1463 0.2939 $0.46541(19)$ $0.3586(3)$ $0.25872(17)$ $0.1563(3)$ $0.37271(5)$ $0.21142(9)$ $0.39467(6)$ $-0.15130(10)$ $0.56526(6)$ $0.36763(12)$ $0.14565(9)$ $-0.00688(16)$ 0 $0.2632(4)$ $-0.010(3)$ $0.339(3)$ $0.247(2)$ $0.196(4)$ $0.3478(17)$ $0.111(4)$	x y z $0.3266(2)$ $0.3152(3)$ $0.61865(8)$ $0.4082(2)$ $0.3777(4)$ $0.59049(8)$ $0.3651(3)$ $0.4513(4)$ $0.54803(9)$ 0.4198 0.4937 0.5293 $0.2411(3)$ $0.4607(4)$ $0.53402(9)$ $0.1587(3)$ $0.4044(5)$ $0.56120(10)$ 0.0749 0.4146 0.5514 $0.2020(2)$ $0.3320(4)$ $0.60359(9)$ 0.1463 0.2939 0.6223 $0.46541(19)$ $0.345(3)$ $0.66974(7)$ $0.44434(16)$ $0.3586(3)$ $0.70026(6)$ $0.25872(17)$ $0.1563(3)$ $0.68763(6)$ $0.37271(5)$ $0.21142(9)$ $0.672848(19)$ $0.39467(6)$ $-0.15130(10)$ $0.63434(2)$ $0.55526(6)$ $0.36763(12)$ $0.60616(3)$ $0.14565(9)$ $-0.00688(16)$ $0.73657(3)$ 0 $0.2632(4)$ 0.75 $-0.010(3)$ $0.339(3)$ $0.7290(7)$ $0.28754(17)$ $0.1707(3)$ $0.8128(6)$ $0.3478(17)$ $0.111(4)$ $0.8039(8)$

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0252 (12)	0.0203 (12)	0.0208 (11)	0.0009 (10)	0.0029 (9)	-0.0014 (9)
C2	0.0301 (13)	0.0220 (12)	0.0255 (12)	-0.0008 (10)	0.0031 (10)	-0.0002 (10)
C3	0.0514 (18)	0.0274 (14)	0.0264 (13)	-0.0040 (13)	0.0084 (12)	0.0034 (11)
C4	0.0562 (19)	0.0245 (14)	0.0272 (13)	0.0024 (13)	-0.0080 (13)	0.0030 (11)
C5	0.0357 (16)	0.0397 (16)	0.0429 (17)	0.0060 (13)	-0.0124 (13)	0.0002 (14)
C6	0.0288 (14)	0.0348 (15)	0.0343 (14)	0.0027 (11)	0.0025 (11)	0.0006 (12)
N1	0.0279 (11)	0.0251 (11)	0.0259 (11)	0.0004 (9)	-0.0003 (9)	-0.0017 (9)
01	0.0341 (10)	0.0343 (10)	0.0258 (9)	-0.0022 (8)	0.0010 (8)	-0.0077 (8)
O2	0.0307 (10)	0.0484 (12)	0.0314 (10)	-0.0019 (9)	0.0142 (8)	0.0066 (9)
S1	0.0237 (3)	0.0258 (3)	0.0183 (3)	-0.0003 (2)	0.0035 (2)	-0.0003 (2)
Cl1	0.0408 (4)	0.0289 (4)	0.0344 (4)	-0.0029 (3)	0.0080 (3)	-0.0068 (3)
Cl2	0.0277 (4)	0.0522 (5)	0.0487 (4)	-0.0044 (3)	0.0104 (3)	0.0122 (4)
C13	0.0932 (7)	0.0384 (4)	0.0331 (4)	-0.0024 (4)	-0.0209 (4)	0.0076 (3)
Na1	0.0320 (6)	0.0350 (6)	0.0330 (6)	-0.0054 (4)	0.0105 (4)	0.0002 (5)
O3	0.0487 (16)	0.0275 (15)	0.0256 (14)	0	-0.0007 (12)	0
O4	0.0287 (10)	0.0442 (12)	0.0321 (10)	0.0026 (9)	0.0047 (8)	-0.0021 (9)

Geometric parameters (Å, °)

C1—C6	1.387 (4)	O2—S1	1.4440 (19)
C1—C2	1.392 (3)	O2—Na1	2.344 (2)
C1—S1	1.783 (2)	S1—Na1 ⁱ	3.3597 (13)
C2—C3	1.391 (4)	Na1—O4	2.446 (2)
C2—Cl2	1.729 (3)	Na1—O1 ⁱⁱⁱ	2.450 (2)
C3—C4	1.372 (4)	Na1—O1 ^{iv}	2.497 (2)
С3—Н3	0.93	Na1—O4 ⁱⁱⁱ	2.500 (2)
C4—C5	1.366 (4)	Na1—O3	2.501 (2)
C4—Cl3	1.741 (3)	Na1—S1 ⁱⁱⁱ	3.3597 (13)
C5—C6	1.387 (4)	Na1—Na1 ^v	3.429 (2)
С5—Н5	0.93	Nal—Nal ⁱ	4.0948 (13)
С6—Н6	0.93	Na1—Na1 ⁱⁱⁱ	4.0948 (13)
N1—S1	1.583 (2)	O3—Na1 ^v	2.501 (2)
N1—Cl1	1.753 (2)	O3—H31	0.809 (10)
O1—S1	1.4493 (18)	O4—Na1 ⁱ	2.500 (2)
O1—Na1 ⁱ	2.450 (2)	O4—H41	0.817 (10)
O1—Na1 ⁱⁱ	2.497 (2)	O4—H42	0.806 (10)
C6—C1—C2	118.3 (2)	O4—Na1—O3	83.78 (6)
C6—C1—S1	117.86 (19)	O1 ⁱⁱⁱ —Na1—O3	78.42 (6)
C2C1S1	123.82 (19)	O1 ^{iv} —Na1—O3	77.55 (6)
C3—C2—C1	120.5 (2)	O4 ⁱⁱⁱ —Na1—O3	157.05 (7)
C3—C2—Cl2	117.3 (2)	O2—Na1—S1 ⁱⁱⁱ	151.64 (6)

C1—C2—Cl2	122.25 (19)	O4—Na1—S1 ⁱⁱⁱ	79.67 (6)
C4—C3—C2	119.3 (3)	O1 ⁱⁱⁱ —Na1—S1 ⁱⁱⁱ	22.68 (4)
С4—С3—Н3	120.3	O1 ^{iv} —Na1—S1 ⁱⁱⁱ	89.73 (6)
С2—С3—Н3	120.3	O4 ⁱⁱⁱ —Na1—S1 ⁱⁱⁱ	81.63 (6)
C5—C4—C3	121.6 (3)	O3—Na1—S1 ⁱⁱⁱ	99.33 (5)
C5—C4—Cl3	119.7 (2)	O2—Na1—Na1 ^v	138.93 (7)
C3—C4—Cl3	118.7 (2)	O4—Na1—Na1 ^v	111.20 (6)
C4—C5—C6	118.9 (3)	O1 ⁱⁱⁱ —Na1—Na1 ^v	46.70 (5)
С4—С5—Н5	120.6	O1 ^{iv} —Na1—Na1 ^v	45.57 (5)
С6—С5—Н5	120.6	O4 ⁱⁱⁱ —Na1—Na1 ^v	114.84 (5)
C5—C6—C1	121.4 (3)	O3—Na1—Na1 ^v	46.72 (5)
С5—С6—Н6	119.3	S1 ⁱⁱⁱ —Na1—Na1 ^v	68.66 (4)
С1—С6—Н6	119.3	O2—Na1—Na1 ⁱ	53.30 (6)
S1—N1—C11	109.95 (12)	O4—Na1—Na1 ⁱ	34.54 (5)
S1—O1—Na1 ⁱ	116.63 (10)	O1 ⁱⁱⁱ —Na1—Na1 ⁱ	115.54 (6)
S1—O1—Na1 ⁱⁱ	150.88 (11)	O1 ^{iv} —Na1—Na1 ⁱ	145.42 (6)
Na1 ⁱ —O1—Na1 ⁱⁱ	87.74 (7)	O4 ⁱⁱⁱ —Na1—Na1 ⁱ	126.81 (6)
S1—O2—Na1	152.22 (13)	O3—Na1—Na1 ⁱ	74.01 (5)
O2—S1—O1	115.22 (11)	S1 ⁱⁱⁱ —Na1—Na1 ⁱ	113.82 (5)
O2—S1—N1	115.11 (12)	Na1 ^v —Na1—Na1 ⁱ	118.20 (3)
01—S1—N1	104.31 (11)	O2—Na1—Na1 ⁱⁱⁱ	100.07 (7)
O2—S1—C1	103.96 (11)	O4—Na1—Na1 ⁱⁱⁱ	88.97 (7)
01—S1—C1	108.23 (11)	O1 ⁱⁱⁱ —Na1—Na1 ⁱⁱⁱ	79.75 (5)
N1—S1—C1	109.90 (11)	O1 ^{iv} —Na1—Na1 ⁱⁱⁱ	103.04 (5)
O2—S1—Na1 ⁱ	74.56 (9)	O4 ⁱⁱⁱ —Na1—Na1 ⁱⁱⁱ	33.70 (4)
O1—S1—Na1 ⁱ	40.69 (8)	O3—Na1—Na1 ⁱⁱⁱ	157.39 (5)
N1—S1—Na1 ⁱ	126.25 (8)	S1 ⁱⁱⁱ —Na1—Na1 ⁱⁱⁱ	58.23 (3)
C1—S1—Na1 ⁱ	118.80 (8)	Na1 ^v —Na1—Na1 ⁱⁱⁱ	118.20 (3)
O2—Na1—O4	82.10 (8)	Na1 ⁱ —Na1—Na1 ⁱⁱⁱ	110.80 (5)
O2—Na1—O1 ⁱⁱⁱ	168.19 (8)	Na1 ^v —O3—Na1	86.55 (10)
O4—Na1—O1 ⁱⁱⁱ	86.09 (7)	Na1 ^v —O3—H31	125 (2)
O2—Na1—O1 ^{iv}	114.55 (8)	Na1—O3—H31	110 (2)
O4—Na1—O1 ^{iv}	156.75 (8)	Na1—O4—Na1 ⁱ	111.76 (8)
O1 ⁱⁱⁱ —Na1—O1 ^{iv}	76.75 (8)	Na1—O4—H41	104.5 (19)
O2—Na1—O4 ⁱⁱⁱ	88.36 (8)	Na1 ⁱ —O4—H41	108 (2)
O4—Na1—O4 ⁱⁱⁱ	118.70 (6)	Na1—O4—H42	117 (2)
O1 ⁱⁱⁱ —Na1—O4 ⁱⁱⁱ	97.45 (7)	Na1 ⁱ —O4—H42	108 (2)
O1 ^{iv} —Na1—O4 ⁱⁱⁱ	79.53 (7)	H41—O4—H42	108 (2)
O2—Na1—O3	100.09 (8)		
C6—C1—C2—C3	-1.3 (4)	C2-C1-S1-01	61.2 (2)
S1—C1—C2—C3	177.9 (2)	C6—C1—S1—N1	127.0 (2)

supplementary materials

C6—C1—C2—Cl2	178.9 (2)	C2-C1-S1-N1	-52.1 (2)
S1—C1—C2—Cl2	-2.0 (3)	C6—C1—S1—Na1 ⁱ	-76.5 (2)
C1—C2—C3—C4	-0.4 (4)	C2—C1—S1—Na1 ⁱ	104.3 (2)
Cl2—C2—C3—C4	179.5 (2)	S1—O2—Na1—O4	51.6 (3)
C2—C3—C4—C5	1.8 (4)	S1—O2—Na1—O1 ⁱⁱⁱ	52.1 (6)
C2—C3—C4—Cl3	-175.9 (2)	S1—O2—Na1—O1 ^{iv}	-145.4 (3)
C3—C4—C5—C6	-1.5 (4)	S1—O2—Na1—O4 ⁱⁱⁱ	-67.7 (3)
Cl3—C4—C5—C6	176.1 (2)	S1—O2—Na1—O3	133.8 (3)
C4—C5—C6—C1	-0.2 (4)	S1—O2—Na1—S1 ⁱⁱⁱ	1.2 (4)
C2-C1-C6-C5	1.6 (4)	S1—O2—Na1—Na1 ^v	165.0 (2)
S1—C1—C6—C5	-177.6 (2)	S1—O2—Na1—Na1 ⁱ	72.6 (3)
Na1—O2—S1—O1	-73.5 (3)	S1—O2—Na1—Na1 ⁱⁱⁱ	-35.9 (3)
Na1—O2—S1—N1	47.9 (3)	O2—Na1—O3—Na1 ^v	152.16 (7)
Na1—O2—S1—C1	168.2 (3)	O4—Na1—O3—Na1 ^v	-127.04 (6)
Na1—O2—S1—Na1 ⁱ	-75.3 (3)	O1 ⁱⁱⁱ —Na1—O3—Na1 ^v	-39.77 (5)
Na1 ⁱ —O1—S1—O2	-2.58 (16)	O1 ^{iv} —Na1—O3—Na1 ^v	39.03 (5)
Na1 ⁱⁱ —O1—S1—O2	141.4 (2)	O4 ⁱⁱⁱ —Na1—O3—Na1 ^v	41.92 (16)
Na1 ⁱ —O1—S1—N1	-129.75 (11)	S1 ⁱⁱⁱ —Na1—O3—Na1 ^v	-48.61 (3)
Na1 ⁱⁱ —O1—S1—N1	14.3 (3)	Na1 ⁱ —Na1—O3—Na1 ^v	-160.87 (5)
Na1 ⁱ —O1—S1—C1	113.26 (12)	Na1 ⁱⁱⁱ —Na1—O3—Na1 ^v	-55.04 (13)
Na1 ⁱⁱ —O1—S1—C1	-102.7 (2)	O2—Na1—O4—Na1 ⁱ	30.41 (8)
Na1 ⁱⁱ —O1—S1—Na1 ⁱ	144.0 (3)	O1 ⁱⁱⁱ —Na1—O4—Na1 ⁱ	-149.48 (8)
Cl1—N1—S1—O2	56.49 (15)	O1 ^{iv} —Na1—O4—Na1 ⁱ	-107.28 (19)
Cl1—N1—S1—O1	-176.27 (11)	O4 ⁱⁱⁱ —Na1—O4—Na1 ⁱ	114.16 (12)
Cl1—N1—S1—C1	-60.44 (15)	O3—Na1—O4—Na1 ⁱ	-70.72 (7)
Cl1—N1—S1—Na1 ⁱ	145.30 (7)	S1 ⁱⁱⁱ —Na1—O4—Na1 ⁱ	-171.42 (8)
C6—C1—S1—O2	3.3 (2)	Na1 ^v —Na1—O4—Na1 ⁱ	-109.28 (7)
C2-C1-S1-O2	-175.8 (2)	Na1 ⁱⁱⁱ —Na1—O4—Na1 ⁱ	130.72 (8)
C6—C1—S1—O1	-119.6 (2)		
Symmetry codes: (i) $-x+1/2$, $y+1/2$, $-z+3/2$; (ii) $x+1/2$, $y+1/2$, z ; (iii) $-x+1/2$, $y-1/2$, $-z+3/2$; (iv) $x-1/2$, $y-1/2$, z ; (v) $-x$, y , $-z+3/2$.			

